
A Decentralized Variable Ordering
Method for Distributed Constraint

Optimization

Anton Chechetka Katia Sycara

CMU-RI-TR-05-18

May 2005

Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

c© Carnegie Mellon University

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
A Decentralized Variable Ordering Method for Distributed Constraint
Optimization

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Robotics Institute,Pittsurgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Many different multi-agent problems, such as distributed scheduling can be formalized as distributed
constraint optimization. Ordering the constraint variables is an important preprocessing step of the
ADOPT algorithm [1], the state of the art method of solving distributed constraint optimization problems
(DCOP). Currently ADOPT uses depth-first search (DFS) trees for that pur- pose. For certain classes of
tasks DFS ordering does not exploit the problem structure as compared to pseudo-tree ordering [2]. Also
the variables are cur- rently ordered in a centralized manner, which requires global information about the
problem structure. We present a variable ordering algorithm, which is both decentralized and makes use
of pseudo-trees, thus exploiting the problem struc- ture when possible. This allows to apply ADOPT to
domains, where global information is unavailable, and find solutions more efficiently. The worst-case
pseudo-tree depth resulting from our algorithm is p2kn, where n is the number of variables, and k is
maximum block size in constraint graph. The algorithm has space complexity of O(kn) and time
complexity of O(n+|E|+k 3 2 n 1 2), where E is the set of edges in a constraint graph.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

Many different multi-agent problems, such as distributed scheduling can
be formalized as distributed constraint optimization. Ordering the constraint
variables is an important preprocessing step of the ADOPT algorithm [1], the
state of the art method of solving distributed constraint optimization problems
(DCOP). Currently ADOPT uses depth-first search (DFS) trees for that pur-
pose. For certain classes of tasks DFS ordering does not exploit the problem
structure as compared to pseudo-tree ordering [2]. Also the variables are cur-
rently ordered in a centralized manner, which requires global information about
the problem structure. We present a variable ordering algorithm, which is both
decentralized and makes use of pseudo-trees, thus exploiting the problem struc-
ture when possible. This allows to apply ADOPT to domains, where global
information is unavailable, and find solutions more efficiently. The worst-case
pseudo-tree depth resulting from our algorithm is

√
2kn, where n is the number

of variables, and k is maximum block size in constraint graph. The algorithm
has space complexity of O(kn) and time complexity of O(n+ |E|+k

3
2 n

1
2), where

E is the set of edges in a constraint graph.

I

Contents

1 Introduction 1

2 Acyclic Case 3

2.1 The Algorithm . 3
2.2 Algorithm Properties . 5

2.2.1 Correctness. 5
2.2.2 Complexity . 8

3 Limited-block Case 8

3.1 Algorithm Overview . 9
3.2 Block Discovery . 10
3.3 Tree Root Selection . 11
3.4 Algorithm Properties . 14
3.5 Complexity . 16

4 Evaluation 17

4.1 Ordering algorithm cost . 17
4.2 ADOPT performance . 18

5 Conclusion 18

6 Acknowledgements 19

III

1 Introduction

The distributed constraint optimization problem (DCOP) [3] is increasingly used
as an underlying framework for modelling agents coordination problems. Sensor
networks [4], distributed scheduling [5], military unmanned aerial vehicles teams
[6] all are applications, where DCOP is or can be used to coordinate the decisions
of autonomous agents.

DCOP consists of variables, each having its own discrete finite domain. Ev-
ery variable’s value is controlled by exactly one agent. Like the majority of the
work in the field, we assume that an agent controls only one variable, although
the situation of one agent controlling several variables is also present in the
literature [7]. The agents must coordinate in order to minimize the global cost
function, which depends on the variables. The cost function is modeled as a set
of valued constraints, and every agent has knowledge only about the constraints
depending on its variable. Therefore, DCOP is a generalization of distributed
constraint satisfaction problem (DisCSP) [8].

Both DCOP and DisCSP stem from the extensively studied constraint satis-
faction problem (CSP) [9], and the algorithms to solve the distributed problems
are often obtained by adapting the existing CSP algorithms to work in a decen-
tralized manner. Several additional factors should be taken into account when
performing such adaptation. First, instead of a single processing unit, in DCOP
there are multiple processing units, thus it is desirable to take advantage of this
increased computing power. Second, the usual assumption is that the commu-
nication between agents can be performed only locally, i.e. a message can be
passed only between agents that share a constraint. This imposes a requirement
of minimizing the communication cost of the algorithm.

The connectivity between the agents can be represented in form of a con-
straint graph. The vertices of the graph are agents, and two agents have an
edge between them, iff they share a constraint.

Recently an algorithm for solving DCOP, ADOPT [1] was proposed. It per-
forms a systematic backtracking with agents acting asynchronously. To achieve
that, the agents are ordered a priori in a tree such that the agents in different
branches of the tree do not share any constraints. ADOPT itself does not ad-
dress the process of ordering and regards it as a preprocessing step. Currently a
centralized algorithm that performs depth-first traversal of the constraint graph,
is used for that purpose.

The higher the agent is in the tree, the higher priority it has for choosing its
variable value. The agents in different branches can act independently of each
other. It is known [1] that the performance of the algorithm crucially depends
on variable ordering, thus making important the task of constructing the tree.

It is hard to find an optimal tree for ADOPT without actually solving the
DCOP, given that the variables may have domains of different size, different
constraints may be more or less restrictive, etc. However, tree depth is a good
approximation of the optimality criterion, because it captures both the issue of
parallelism - generally, the smaller the depth the more branches the tree has;
and information travel time - the smaller the depth the shorter the path of the

1

Figure 1: 7-nodes chain constraint graph. Dotted arrows mark DFS tree order-
ing. Dashed arrows - pseudo-tree ordering.

information about variable assignments travelling from root to leaves.

Finding the minimum depth DFS tree of the graph is NP-complete problem,
so different heuristics, such as max-degree [10], are usually employed to obtain
an approximate solution. Distributed algorithm for constructing DFS trees can
be found in [11].

For certain classes of tasks, however, restricting the possible orderings to
DFS trees can have strong negative impact on ADOPT performance as com-
pared to pseudo-trees [2]. Consider for example the collective choice of firing
positions by unmanned helicopters, presented in [6]. The constraint graph for
this task has a chain structure, with every agent sharing constraints with its
left and right neighbors (Fig. 1). The DFS tree for this graph has depth linear
in number of variables. Optimal pseudo-tree for the same graph has logarith-
mic depth. Therefore, the former case results in longer time to find the DCOP
solution than the latter.

The centralized iterative algorithm for constructing pseudo-trees was pre-
sented in [2], and further developed in [12] to strengthen tree depth guarantees.
It was shown for certain classes of CSP to yield better performance of the back-
tracking algorithm than the DFS orderings. Because of the similarity of the CSP
and DCOP problems and algorithms, one can expect similar results for DCOP.
The drawback of these methods is that they need complete constraint graph
connectivity information. This requirement does not allow to apply ADOPT to
domains in which information about the constraint graph cannot be gathered
together and processed by a single unit. Sensor networks [6] is an example of
such domain.

In this paper we present an algorithm which is both decentralized and makes
use of pseudo-trees. The former property enables one to solve DCOP problems
without having to process any global information, and the latter increases the
efficiency of the solution search if the problem structure allows it. Our algo-
rithm is a decentralized modification of the general iterative algorithm from [2].
Unlike [12], it takes into account not only the depth of the resulting pseudo-
tree, but also the maximum message travel time from root to leaves given the
local communication assumptions. It yields an optimal pseudo-tree in terms of
message travel time for acyclic graphs and results in tree depth no greater than
DFS traversal for general graphs.

2

2 Acyclic Case

2.1 The Algorithm

Suppose that the constraint graph X =< V, E > is acyclic. Let all the edges
have unit length. Denote N the set of agent x’s neighbors. We will use the
terms agent, node, and vertice interchangeably. We will also substitute pseudo-
tree for tree, where it does not cause confusion with DFS trees. When speaking
of subgraphs X(Vi ⊆ V) ≡ Xi ⊆ X , we will assume that Ei contains all the
edges from E, which pass between vertices from Vi and does not contain any
other edges.

Definition 1 For agent x and X0 ⊆ X

AgentDepth(x, X0) ≡ max{(AgentDepth(xi, X(V0 \ x)) + 1, ∀xi ∈ V0 ∩ N), 0}
(1)

Definition 2 For constraint graph X

GraphDepth(X) ≡ min
x∈X

AgentDepth(x, X) (2)

Observe that AgentDepth(x, X) is the maximum length of a simple path in
X beginning in x.

The tree building algorithm is as follows. First, select a node x1 such that
AgentDepth(x1) = GraphDepth(X). Assign this node to be a root of the
tree. Second, remove x1 from the graph (this does not mean re-formulating the
optimization problem - the node and corresponding edges are only removed from
consideration by the tree-building algorithm). For every connected subgraph
formed after the removal repeat the algorithm recursively, and set the next-
level roots to be children of x1 in the tree ordering. This algorithm can be
executed by running the locally communicating asynchronous agents, so that
every agent controls one node (Fig. 2).

The result of the algorithm is that every agent knows the local tree infor-
mation.

Definition 3 Local tree information for agent x is

• ancestors ⊂ V, an ordered set such that ancestors[1] is the root of the
tree, ancestors[k] is the parent of ancestors[k+1], and ancestors[last] is
the parent of x.

• children ⊂ V, an ordered set containing all the children of x.

• ancestors routes ⊂ N, an ordered set such that ancestors routes[k] is the
first node (not counting x itself) of the simple path from x to ancestors[k].

• ancestors distances, an array of positive integers such that ancestors distances[k]
is the length of the simple path from x to ancestors[k].

3

1: receive AgentDepth(xi, X \ x) from all xi ∈ N except one xk;
2: send AgentDepth(x, X \ xk) to xk;
3: receive AgentDepth(xk, X \ x) from xk;
4: send AgentDepth(x, X \ xi) to all xi ∈ N \ xk;
5: send AgentDepth(x, X) to all xi ∈ N ;
6: receive AgentDepth(xi, X) from all xi ∈ N ;
7: L = 0;
8: while |N | > 0
9: if ∀xi ∈ NAgentDepth(x, X) < AgentDepth(xi, X)
10: send ”child x” to ancestors[last] via ancestors routes[last];
11: send ”ancestor x, distance = 1” to all xi ∈ N ;
12: for ∀xi ∈ N

13: receive ”child yi”;
14: append yi to children;
15: append xi to children routes;
16: end for;

17: exit;

18: else

19: L = L + 1;
20: receive ”ancestor a, distance = dist” from xa ∈ N ;
21: append a to ancestors;
22: append xa to ancestors routes;
23: append dist to ancestors distances;
24: send ”ancestor a, distance = dist+1” to all xi ∈ N \ xa;
25: if a ≡ xa

26: remove a from N;
27: else

28: receive AgentDepth(xa, XL \ x) from xa;
29: receive AgentDepth(xk, XL) from xk;
30: send AgentDepth(x, XL) to xk;
31: end if;

32: send AgentDepth(x, XL \ xi) to all xi ∈ N \ xk;
33: send AgentDepth(x, XL) to all xi ∈ N \ xk;
34: receive AgentDepth(x, XL) from all xi ∈ N \ xk;
35: end if;

36: end while;

Figure 2: Acyclic graph algorithm for agent x

4

• children routes ⊂ N, an ordered set such that children routes[k] is the first
node (not counting x itself) of the simple path from x to children[k].

On line (1:) ”all xi ∈ N except one xk” means that an agent receives |N |−1
messages from its neighbors, and the remaining agent whose message was not
received among these |N | − 1 messages is denoted xk. The receiver does not
select xk beforehand. |N | − 1 values of neighbors’ AgentDepth are enough
to compute AgentDepth(x, X \ xk), and x does that without waiting for the
|N |’th value. If the agents were to wait for messages from all their neighbors,
communication would never be started and they all would be locked at line (1:).

Every cycle iteration agent x calculates its metric AgentDepth for the re-
maining subgraph and checks if it is the minimal value within that subgraph
(line 9:). If it is, and the tie (if there is one) is broken in this agent’s favor, then
it becomes a node of depth L in the tree, reports this fact to its parent (10:), no-
tifies the subgraphs (11:), waits for the information about its children (12:-16:)
and exits the cycle. Otherwise it increases its L value (19:), receives and records
the information about the next ancestor (20:-23:), updates the AgentDepth val-
ues that might change (25:-34:), and repeats the process for a smaller subgraph.

If two agents have the same AgentDepth equal to a minimum value, the tie
is broken in favor of the agent which is closer to the previous level ancestor. It
will be shown further, that a tie between more than two agents is impossible,
thus the tiebreaking rule can always be employed, except for the first iteration
of the algorithm, when there is no previous ancestor. In the latter case the tie
is broken using agent names.

To reduce the communication load, the information about the AgentDepth’s,
which cannot change with the removal of a given node, is not communicated.
This means that instead of repeating (1:-6:) for each iteration, agents use (28:-
34:) instead.

2.2 Algorithm Properties

2.2.1 Correctness.

The following two theorems show that for a given agent x it is sufficient to
compare its AgentDepth value only with the AgentDepth values of x’s neighbors
to find out whether AgentDepth(x, X) = GraphDepth(X).

Theorem 1 For any acyclic graph X, if there are 2 nodes x1 and x2 such that
AgentDepth(x1, X) = AgentDepth(x2, X) = GraphDepth(X), then x1 and x2

are neighbors. No more than 2 nodes satisfy the requirement AgentDepth(x, X) =
GraphDepth(X).

Proof: First observe that the second part of the statement follows directly from
the first part and the graph being ayclic. Indeed, if there are 3 or more nodes
in a tie, they must all be neighbors with each other, thus forming a cycle.

The proof of the first part is as follows: suppose ∃x1, x2 : AgentDepth(x1, X) =
AgentDepth(x2, X) = GraphDepth(X) and x1, xi1 , . . . , xik

, x2 is a simple path

5

from x1 to x2. By definition of AgentDepth,

AgentDepth(xi1 , X(V \ x1)) ≤ AgentDepth(x1, X) − 1
AgentDepth(xi1 , X(V \ xi2)) ≤ AgentDepth(x1, X) − dist(x2, xi1)

(3)

(note that xi2 = x2 is possible), and because (V \ x1) ∪ (V \ xi2) ≡ V,

AgentDepth(xi1 , X) ≤
max{AgentDepth(x1, X) − 1, AgentDepth(x1, X) − dist(x2, xi1)}

< GraphDepth(X),
(4)

a contradiction. Therefore, the assumption is incorrect. 2

Theorem 2 For any acyclic graph X, if for all neighbors xi of a given node
x holds AgentDepth(x, X) ≤ AgentDepth(xi, X), then AgentDepth(x, X) =
GraphDepth(X).

Proof: Suppose AgentDepth(x, X) > GraphDepth(X). Let xmin be the node
such that AgentDepth(xmin, X) = GraphDepth(X), and x, x1, . . . , xk, xmin is
a simple path from x to xmin. By definition of AgentDepth,

AgentDepth(x1, X(V \ x)) ≤ AgentDepth(x, X)− 1
AgentDepth(x1, X(V \ x2)) ≤ AgentDepth(xmin, X) − dist(xmin, x1) ≤
≤ GraphDepth(X) − 1 < AgentDepth(x, X)− 1

(5)
therefore,

AgentDepth(x1, X) ≤ AgentDepth(x, X) − 1 ⇒
⇒ AgentDepth(x1, X) < AgentDepth(x, X)

(6)

a contradiction. 2

The following result enables one to think of the graph metric GraphDepth(X)
as an upper bound of the resulting tree depth.

Theorem 3 For any acyclic graph X, the result of the algorithm execution is a
tree of depth no greater than GraphDepth(X)

Proof: It is sufficient to prove that after removal of node x such that

AgentDepth(x, X) = GraphDepth(X)

any of the resulting connected subgraphs Xi has GraphDepth(Xi) ≤ GraphDepth(X)−
1. The number of subgraphs is equal to the number of x’s neighbors. For each
neighbor xi of x (Ni is the set of xi’s neighbors in X)

AgentDepth(xi, Xi) = AgentDepth(xi, X(V \ x)) ≤
≤ AgentDepth(x, X)− 1 = GraphDepth(X) − 1,

(7)

therefore GraphDepth(Xi) ≤ GraphDepth(X) − 1. 2

The next result shows that giving up the requirement of parent and child
being neighbors in the constraint graph does not lead to a worse solution in
terms of maximum message travel time from root to leaves.

6

Theorem 4 For any acyclic graph X, if in the resulting tree x1 is a root, xi is
a parent of xi+1, i = 1, k − 1, xk is a leaf, then

k−1
∑

i=1

dist(xi, xi+1) ≤ GraphDepth(X)

Note that the sum under consideration is the number of ”hops” the message sent
from x1 to xk encounters, if it is routed through the consecutive descendants of
the resulting tree.

Proof: It is sufficient to prove that if x is a root of the tree and x1 is its child,
then AgentDepth(x, X) ≥ dist(x, x1) + AgentDepth(x1, X(V \ x)). Suppose
dist(x, x1) + AgentDepth(x1, X(V \ x)) > AgentDepth(x, X). There exists a
simple path from x to x1, denote it x, xi1 , . . . , xik

, x1. Because

AgentDepth(x1, X(V \ xik
)) ≤ AgentDepth(x, X) − dist(x, x1), (8)

and

AgentDepth(xik
, X(V \ {x, x1})) ≤ AgentDepth(x1, X(V \ x)) − 1, (9)

we get

AgentDepth(xik
, X(V \ x)) =

= max{(AgentDepth(x1, X(V \ x)) − 1), AgentDepth(x, X)− dist(x, x1) + 1} ≤
≤ AgentDepth(x1, X(V \ x))

(10)
and because dist(x, xik

) < dist(x, x1), even in case AgentDepth(xik
, X(V \x)) =

AgentDepth(x1, X(V \ x)), the tiebreaking rule would choose xik
over x1 as a

root for the subgraph, therefore the assumption is impossible.2

Theorem 5 For any acyclic graph X the depth of the resulting tree is less than
√

2|V |

Proof: Consider a resulting tree ordering with depth h. There are agents
x0, . . . , xh such that xk is a parent of xk+1. When the root of the tree was
selected, the constraint graph was divided into the subgraph X1 ⊃ {x1, . . . , xh}
and at least h agents not contained by X1. The proof of this fact is as follows.
By Theorem 3,

AgentDepth(x0, X) ≥ h (11)

Let x0, xi1 , . . . , xik
, x1 be the simple path from x0 to x1. Then

AgentDepth(xi1 , X(V \ x0)) ≤ AgentDepth(x0, X) − 1 (12)

If the assumption |V (X1)| > |V (X)| − h holds, then

AgentDepth(xi1 , X(V \ (Ni1 \ x0))) < h (13)

7

Therefore, from (12) and (13)

AgentDepth(xi1 , X) ≤ h − 1 < AgentDepth(x0, X) (14)

a contradiction with AgentDepth(x0, X) = GraphDepth(X), and the assump-
tion |V (X1)| > |V (X)| − h is wrong.

Applying this reasoning recursively, conclude that the total number of nodes
in the graph

|V | ≥ 1 +

h
∑

0

k = 1 +
h(h + 1)

2
(15)

therefore
h <

√

2|V | (16)

2

2.2.2 Complexity

The amount of memory required for a given agent x is O(|N |+h(X)) = O(|N |+
√

|V |), where h is the resulting pseudo-tree ordering depth. It is clear from the
fact that the agent should remember the information about its ancestors (there
can be at most h(X) − 1 of them) and children (at most |N |). Compared to
a DFS tree, where local memory cost does not depend on the total number of
nodes in the graph, but only on the number of neighbors, one can conclude that
in our algorithm routing memory is traded off for the tree depth. In terms of
the asymptotical memory requirement, in general O(|N | +

√

|V |) is equivalent
to O(|V |).

We estimate the time required to run the algorithm using the popular metric
of synchronous cycles [13]. A cycle is defined as an event of all the agents
sending all the messages that are ready and receiving all the messages that
were sent during the previous cycle. It takes O(GraphDepth(X)) = O(|V |)
cycles to propagate the nodes metrics information along the graph. Because
the information about paths depths is reused, after selection and removal of
the ancestor node, to select the next level ancestor one needs to propagate the
information about the ancestor only one step further than the node which would
be the next level ancestor, which requires dist(ancestori, ancestori+1)+1 cycles
and the same number of cycles to propagate the child information back to the
ancestori from ancestori+1. Because

∑

dist(ancestori, ancestori+1) ≤ GraphDepth(X), (17)

total number of cycles needed is O(GraphDepth(X)) = O(|V |).

3 Limited-block Case

This is a generalization of the acyclic case, allowing cycles of limited size to
exist in the constraint graph.

8

37: m = receiveMessage(); prev = m.from; append x to m.stack;
38: for i = 1:|m.blocks|
39: if ((m.blocks[i] \ m.from) ∩ neighbors 6= ∅)
40: for k=m.blocks[i].top:|m.stack| add m.stack[k] to m.blocks[i];
41: end for; end if; end for;

42: for i = 1:(|m.stack|-2) if (m.stack[i] ∈ neighbors)
43: for k=i:|m.stack| add m.stack[k] to new block; end for;

44: add new block to m.blocks; break;

45: end if; end for;

46: ∀ i6=j: (m.blocks[i] ∩ m.blocks[j] > 1) merge(m.blocks[i], m.blocks[j]);

47: candidates = neighbors \ ((∪ m.blocks) ∪ m.stack);
48: while candidates 6= ∅
49: if (|m.stack| +

∑

i |m.blocks[i]| > MAX BLOCK) break; end if;

50: pick next ∈ candidates; candidates = candidates \ next;
51: send m to next; //go one step deeper
52: mNew = receiveMessage(); //receive control back
53: (∀ i: mNew.blocks[i].top = |mNew.stack|) remove mNew.blocks[i];
54: if mNew.blocks 6= m.blocks //blocks have been updated
55: add next to BlockChildren; parent = prev; end if;

56: m = mNew; candidates = candidates \ ((∪ m.blocks) ∪ m.stack);
57: end while;

58: remove m.stack[last]; //un-append this agent
59: send m to prev; //return control up one level in DFS tree

Figure 3: Block discovery algorithm for agent x. block.top denotes the position
of the highest block’s element in the stack

Definition 4 In graph theory a block is a maximal connected subgraph without
a cutvertex1 [14]

Each block is either an isolated vertex, a bridge (two vertices and an edge
between them), or a maximal 2-connected2 subgraph. We will refer to only
2-connected subgraphs as blocks, disregarding the first two degenerate cases. It
is known [14] that two blocks intersect in at most one vertex, that is a cutvertex
of the graph.

From now on assume that the maximum block size in the constraint graph
is k. This also limits the maximum simple cycle length to be no more than k.

3.1 Algorithm Overview

The algorithm proceeds in two major stages. During preliminary stage each
agent discovers its block configuration. The main stage is the iterative process

1Cutvertex is a vertex that separates two other vertices in a connected subgraph
2Graph G is k-connected iff ∀V1 ⊂ V (G), |V1| < k G − V1 is connected [14]

9

function blocksOrder()

60: initAgentDepths(NC, C);

61: while (true)

62: if (AgentDepth(x, X) < AgentDepth(xi, X) ∀xi ∈ NC ∪ (∪jCj))

63: MakeMyselfRoot(); exit;

64: else //I am not a new root, propagate the new root information

65: if received ”child y”, forward it via ancestors routes[last]; end if;

66: receive list from y ∈ N ; //list of newly-ordered ancestors

67: append list to ancestors; set ancestor routes[a] = y ∀ a ∈ list;

68: if (∃Ci ∈ C : list[1] ∈ Ci) //I’m in the same block as root

69: orderUsingDFS(Ci, list); exit;

70: else if (∃Ci ∈ C : ancestors list[last] ∈ Ci); //not in the same block as root,

71: updateDepthsAndStructure(Ci, list); //but block configuration has changed

72: else //not a root and block configuration hasn’t changed

73: updateDepths(list);

74: end if; end if; end while;

end blocksOrder;

function MakeMyselfRoot()

80: send ”child x” to ancestors[last] via ancestor routes[last];

81: send list=[x] to NC ∪ (∪∀Cj∈C child(Cj));

82: (for ∀Cj ∈ C) append child(Cj) to children and children routes; end for;

83: for ∀xi ∈ NC

84: receive ”child yi” from xi;

85: append yi to children and xi to children routes;

86: end for;

end MakeMyselfRoot;

Figure 4: Limited-block algorithm for agent x

of selecting nodes for several top levels of the hierarchy, removing them from
consideration and considering resulting subgraphs, much like the acyclic case
algorithm.

3.2 Block Discovery

The first stage of the algorithm is to discover the block configuration of every
agent.

Definition 5 Block configuration of the agent x is the following data:

• A set NC ∈ N of neighbors, which do not belong to the same block as x.

• A set C = {C1, . . . , Ck} of blocks, to which x belongs. Ci = {xi1 , . . . , xi|Ci|
}

(all the block members are included, not only the neighbors of x)

• ∀xj ∈ Ci \ x parent(xj) ∈ N , BlockChildren(xj) ⊂ N - the parent and
children of x in the DFS spanning tree for Ci rooted at xj .

10

• ∀Ci child(Ci) ∈ N the child of x in the DFS spanning tree for Ci rooted
at x. (x cannot have more than one child in this tree).

This information can be obtained using the multiple distributed depth-
limited (no more than k+1) DFS traversals of the constraint graph, one traversal
per agent. The traversals can be executed in parallel. Fig. 3 contains the algo-
rithm pseudocode (for simplicity the algorithm shown is for only one traversal,
started in a pre-determined agent). It performs limited-depth DFS traversal
with currently known blocks structure (m.blocks) included in every message.
Although it is not shown in the code, every node that is recorded in the mes-
sage is accompanied by its depth in the traversal stack. The depth in the stack
is equivalent to the distance of the given node from root within a block. Every
message also includes current stack (m.stack) of the traversal. The blocks are
merged (46:) whenever it is possible to determine that two blocks in a message
are different subsets of the same block. If a block is found not to contain the
root of the traversal (53:), it is removed from the message.

Because the maximum size of a message is O(k) (49:), simultaneous traversals
require no more than O(nk) memory on each agent.

Definition 6 The distance between x1, x2 ∈ X, denoted dist(x1, x2, X) is the
length of the simple path such that the subpaths between neighboring cutvertices
xik

, xik+1
are selected according to the DFS ordering of the corresponding block

rooted at xik

Note that in general dist(xi, xj , X) 6= dist(xj , xi, X).

3.3 Tree Root Selection

Once the block configuration has been determined, one can use essentially the
same iterative algorithm as in acyclic case to construct a tree. (see Fig. 4, 5, 6
and the following definitions).

We assume that each agent has a prioritization on its neighbors, and selects
the next node to visit in a DFS traversal (50:) so that it has the highest priority
among all the avaliable neighbors. Further assume that this prioritization does
not change over time. Position of a node in a list of neighbors is an example of
such prioritization.

Definition 7 For agent x, graph X and set NCS ⊆ NC(x, X), CS ⊆ C(x, X))

AgentDepth(x, NCS, CS, X) ≡
max{0, (AgentDepth(xi, NCi \ x, Ci, X) + 1, ∀xi ∈ NCS),

(AgentDepth(xij
, NCij

, Cij
\ Ci, X) + dist(x, xij

, X),
∀xij

∈ Ci \ x, ∀Ci ∈ CS)}
(18)

Definition 8 For any agent x ∈ X, where X is a connected graph

AgentDepth(x, X) ≡ AgentDepth(x, NC(x, X), C(x, X), X) (19)

11

function initAgentDepths(NCU, CU) //U is for ’unknown’

90: known = 0;

91: while |NCU| + |CU| > reported + 1

92: receive AgentDepth(xi, NC(xi)\x, C(xi), X), xi ∈ NCU ; known = known + 1;

93: or (receive AgentDepth(xi, NC(xi), C(xi) \ Cj , X), xi ∈ Cj ∈ CU;

94: if ∀xi from Cj have reported, known = known + 1;

95: end while;

96: unrep = xi ∈ NCU with AgentDepth not reported,

97: or Cj ∈ CU with not all AgentDepths reported in the previous loop;

98: send AgentDepth(x,NC \ unrep, C \ unrep, X) to unrep;

99: receive AgentDepth(xi, NCi \ unrep, Ci \ unrep, X) from ∀xi ∈ unrep;

100: send AgentDepth(x, NC \xi, C \xi, X) to all xi ∈ (NC ∪ C) \ unrep;

101: send AgentDepth(x, X) to ∀xi ∈ (NC ∪ C);

102: receive AgentDepth(xi, X) from ∀xi ∈ (NC ∪ C);

end initAgentDepths;

function orderUsingDFS(Ci, list)

110: append x to list; append BlockChildren(list[1]) to children and children routes;

111: send list to BlockChildren(list[1]) ∪ (∪Cj∈C\Ci
child(Cj)) ∪ NC;

112: for ∀xi ∈ NC ∪ C \ Ci; //get remaining children information

113: receive ”child yi”; append yi to children; append xi to children routes;

end for; end orderUsingDFS;

Figure 5: Limited block algorithm subroutines

function updateDepthsAndStructure(Ci, list)

120: send list to BlockChildren(list[last]) ∪ (∪Cj∈C\Ci
child(Cj)) ∪ NC;

121: remove Ci from C;

122: [newC, newNC] = rebuildBlock(Ci\list[last]);

123: add newC to C; add newNC to NC;

124: initAgentDepths(newNC, newC);

end updateDepthsAndStructure;

function updateDepths(list, y)

130: if ∃Cj ∈ C : y ∈ Cj

131: send list to BlockChildren(y) ∪ (∪Cj∈C:y 6∈Cj
child(Cj)) ∪ NC;

132: initAgentDepths(∅, Cj);

133: else

134: send list to (∪Ci∈Cchild(Ci)) ∪ (NC \ y);

135: initAgentDepths(y, ∅);

end if; end updateDepths;

Figure 6: Limited block algorithm subroutines

12

Figure 7: Limited-block example. Ellipses denote blocks, solid circles - agents,
solid lines - ordering relationships, dotted lines - edges of the constraint graph

Definition 9 For any block C in graph X

BlockDepth(C, X) ≡ min
x∈C

AgentDepth(x, X) (20)

Definition 10 For constraint graph X

GraphDepth(X) ≡ min
x∈X

AgentDepth(x, X) (21)

The algorithm proceeds as follows. First, like in the acyclic case, the agents
exchange messages to compute their own and their neighbors’ AgentDepths
(60:). After this step is complete, the agent with the smallest depth value be-
comes the root for the current connected subgraph. Depending on their position
relative to the root, other agents take different actions. Fig. 7 presents an ex-
ample of the possible situations an agent can find itself in. Suppose agent a was
chosen to be the root (62:-63:). To announce that it sends a message to its par-
ent in the ordering (80:), and messages to its neighbors that are not in the same
block, and to DFS children in the blocks (81:). To propagate this information
for all the subgraphs, other agents forward these messages as necessary (65:,
111:, 120:, 131:, 134:). After sending its messages, a waits for the information
about the children that it does not know about yet (83:-86:) and then exits.

Agents in the same block as root (68:) are ordered according to the DFS
ordering of that block (69:, 82:, 110:-113:). For example, agent b is in the same
block as a and gets its ordering according to the DFS spanning tree for that
block rooted at a. Solid lines in Fig. 7 denote that clusters A and B become
ordered according to DFS trees rooted at a.

Agents not in the same block as root, but in the same block as some other
agent that becomes ordered (such as c that is in the same block as b, but not
in the same block as a) (70:-71:) need to rediscover their block configuration,
because after removal of a node the block may split in several blocks or even
disappear alogether. The rediscovery is performed by the same function as the

13

Figure 8: Simple-cycle and fully connected blocks

initial block information discovery, but restricted to agents of one block (122:-
123:). For example, c restricts its effort to the agents in cluster C and does not
attempt a new DFS traversal in the direction of node d. This is achieved by
using neighbors ∩ (Ci\list[last]) instead of just neighbors on line (46:) of the
block discovery procedure.

The rest of the agents, those not in the same blocks with the newly-ordered
nodes (72:-73:) (e.g. d, e, f) only need to forward the information about the
new ancestors (131:, 134:) and update the relevant part of their AgentDepths
(132:, 135:). Then all the remaining agents participate in the next iteration of
the ordering process.

An alternative to ordering the blocks that contain the root in a DFS man-
ner would be to remove only root from consideration, rebuild the corresponding
blocks and proceed to the next iteration. Either aproach can be used depending
on how densely the nodes are connected inside blocks. If inside-block connec-
tivity is sparse, the latter method is preferable, because it has a high chance of
discovering a tree of smaller depth than any of the DFS spanning trees for this
block. Otherwise the former method should be used, because it is faster and
improvements over DFS are unlikely. Fig. 8 illustrates this idea with two ex-
treme cases of inside-block connectivity: fully-connected block and simple-cycle
block. From now on assume that the former approach (ordering whole clusters
at once) is chosen.

3.4 Algorithm Properties

The following results show that for each iteration every agent can conclude
whether it is a a root in a subgraph using only information about its neighbors
and blocks it belongs to.

Theorem 6 If X is a connected graph and there are 2 nodes xi, xj ∈ X such
that AgentDepth(xi, X) = AgentDepth(xj , X) = depth(X), then xi and xj are
either neighbors or belong to the same block.

Proof: The proof by contradiction is similar to the acyclic case. Suppose
AgentDepth(x1, X) = AgentDepth(xn, X) = depth(X), and x1 and xn are not
neighbors and do not belong to the same block. It means that there is a simple

14

path from x1 to x2, denote it x1, x2, . . . , xn−1, xn, and at least one of the
nodes on this path, xi, separates x1 and x2. Suppose that xi and xi−1 belong
to the same block Ci1 , and xi and xi+1 do not belong to the same block (other
3 possible cases have proofs that differ very little from this case).

By definition,

AgentDepth(x1, X) ≥ dist(x1, xi, X) + AgentDepth(xi, NCi, Ci \ Ci1 , X)
AgentDepth(xn, X) ≥ dist(xn, xi, X) + AgentDepth(xi, NCi \ xi+1, Ci, X)

(22)
but then

AgentDepth(xi, X) =
max{AgentDepth(xi, NC,Ci \ Ci1 , X), AgentDepth(xi, NCi \ xi+1, Ci, X)} <

< GraphDepth(X)
(23)

which is a contradiction and shows that the assumption is wrong. 2

Theorem 7 If X is a connected graph, and for all neighbors xi ∈ NC and
blocks Cj ∈ C of a given node x holds

AgentDepth(x, X) ≤ AgentDepth(xi, X) (24)

AgentDepth(x, X) ≤ BlockDepth(Cj, X) (25)

then AgentDepth(x) = GraphDepth(X).

Proof: Again, the proof by contradiction is similar to the acyclic case. Suppose
AgentDepth(x1, X) > AgentDepth(xn, X) = depth(X), and

∀xi ∈ NC1 AgentDepth(x1, X) ≤ AgentDepth(x1i
, X)

∀C1j
∈ C1 AgentDepth(x1, X) ≤ BlockDepth(C1j

, X)
(26)

There is a simple path from x1 to x2, denote it x1, x2, . . . , xn−1, xn, and at
least one of the nodes on this path, separates x1 and x2. Denote xi the first
such node on the path from x1 to xn. It is either a neighbor of x1 or belongs
to the same block with x1. Suppose that xi and xi−1 belong to the same block
Ci1 , and xi and xi+1 do not belong to the same block (other 3 possible cases
have proofs that differ very little from this case).

By definition,

AgentDepth(x1, X) ≥ dist(x1, xi) + AgentDepth(xi, NCi, Ci \ Ci1 , X)
AgentDepth(xn, X) ≥ dist(xn, xi) + AgentDepth(xi, NCi \ xi+1, Ci, X)

(27)
but then

AgentDepth(xi, X) =
max{AgentDepth(xi, NCi, Ci \ Ci1 , X), AgentDepth(xi, NCi \ xi+1, Ci, X)} <

< max{AgentDepth(x1, X) − dist(x1, xi), AgentDepth(xn, X) − dist(xn, xi)}
(28)

that is either AgentDepth(xi, X) < AgentDepth(x1, X) (a contradiction with (26)),
or AgentDepth(xi, X) < AgentDepth(xn, X) = GraphDepth(X) (a contradic-
tion with GraphDepth definition). 2

15

Theorem 8 If X is a connected graph, the result of the algorithm execution is
a tree of depth no greater than GraphDepth(X)

Proof: It is sufficient to prove that after removing a node x and its blocks from
graph X for all the resulting connected subgraphs Xi

GraphDepth(Xi) ≤ AgentDepth(x, X)− 1 (29)

Because ∀xi ∈ NC ∩ Xi

AgentDepth(xi, Xi) =
= AgentDepth(xi, NC(xi, X) \ x, C(xi, X), X) ≤ AgentDepth(x, X)− 1,

(30)
and the theorem statement holds for all the subgraphs such that Xi ∩NC 6= ∅.

For subgraphs Xi that were connected to one of the removed blocks Ci,
denote yi the node separating Xi from x.

AgentDepth(yi, Xi) ≤ AgentDepth(x, X)− dist(x, xi) ⇒
⇒ GraphDepth(Xi) < GrapthDepth(x, X) − dist(x, xi)

(31)

that concludes the proof. 2

Theorem 9 For any connected graph X the depth of the resulting tree is less
than

√

2k|V |, where k is the maximum block size.

The proof is analogous to the acyclic case, given the observation that after
removal of a block from the graph there will remain a subgraph Xi such that
GraphDepth(Xi) ≥ GraphDepth(X) − k. 2

3.5 Complexity

Estimate memory requirements. Parallel DFS search can require space up to
O(nk) (n threads with k-long depth). Block of size l requires O(l2) space,
thus information about all the blocks takes up to O(k2 n

k
) = O(nk). Ancestors

information O(
√

nk), and children information O(n). Therefore, the worst-case
memory complexity of the algorithm is O(nk).

The time complexity of the algorithm (again, in synchronous cycles) is O(n+

|E|+k
3
2 n

1
2), where E is the number of edges in the constraint graph. The proof

is as follows. The initial block discovery stage takes up to O(n + |E|) time all
the DFS traversals are executed simultaneously. The initial depth information
propagation takes up to O(GraphDepth(X)) = O(n). If x is the root of the
tree, x1 is its child, then it is enough to propagate the depth information for a
distance of dist(x, x1) + k before x1 can make a decision to become x’s child.
Block rediscovery also takes no more than O(k) cycles per iteration. Because

the maximum pseudo-tree depth is O(
√

kn), this adds the O(k
3
2 n

1
2) term.

16

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

Branching factor

T
im

e
,

s
e

c
o

n
d

s

Acyclic case − ordering cost

25 agents
50 agents
75 agents
100 agents

1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

2000

2500

3000

Branching factor

M
e

s
s
a

g
e

s

Acyclic case − ordering cost

25 agents
50 agents
75 agents
100 agents

3 4 5 6 7
1

1.05

1.1

1.15

1.2

1.25
Limited−block case − ordering cost

T
im

e
,

s
e

c
o

n
d

s

Max block size
3 4 5 6 7

1300

1400

1500

1600

1700

1800

1900

2000

Max block size

M
e

s
s
a

g
e

s

Limited−block case − ordering cost

Figure 9: Ordering costs for acyclic (top row) and limited-block (bottom row)
cases

4 Evaluation

The experimental evaluation consists of two parts. The first part is the com-
putational and communicational cost of running the oredring algorithm itself.
The second part shows how the ADOPT algorithm performs with pseudotree
ordering compared to DFS ordering.

4.1 Ordering algorithm cost

The experimental measurements of the pseudo-tree ordering cost are summa-
rized in Fig. 9. Limited-block case experiments were conducted for 50 agents,
branching factor 1.7 and intra-cluster link density 0.5, varying only maximum
cluster size. The algorithm was implemented using RETSINA [15] multiagent
framework for message passing between agents. The time results were obtained
on a single 3GHz Pentim 4 computer with 1GB of RAM. It was found that most
of the computational resources was spent on parsing KQML messages.

17

1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

350

400

450

500

Branching factor

T
im

e
,

s
e

c
o

n
d

s

acyclic, 50 vars, constraint density 0.4

Pseudotree
DFS

0.1 0.2 0.3 0.4 0.5
30

40

50

60

70

80

90

100

Constraint density

T
im

e
,

s
e

c
o

n
d

s

acyclic, 50 vars, branch factor 1.8

Pseudotree
DFS

1 1.2 1.4 1.6 1.8 2
25

30

35

40

45

50

55

60

65

Branching factor

T
im

e
,

s
e

c
o

n
d

s

cluster, 40 vars, constraint density 0.2

Pseudotree
DFS

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

120

140

160

180

200

Constraint density

T
im

e
,

s
e

c
o

n
d

s

cluster, 40 vars, branch factor 1.8

Pseudotree
DFS

Figure 10: ADOPT performance using DFS and pseudotree orderings. Acyclic
constraint graphs (top row) and limited-block case (bottom row)

4.2 ADOPT performance

We provide a comparison of the performance of ADOPT algorithm using DFS
and pseudotree ordering of the variables (Fig. 10). We used only the algorithm
runtime as a measure of performance, because communicational cost is linearly
proportional to the runtime. Experiments with ADOPT were performed using
agents running on 3 networked computers. Branching factor of the constraint
tree (meta-tree in case of limited-block graphs) and average constraint tightness
(fraction of the variables assignments that cause constraint violation) were var-
ied. One can conclude that while neither ordering method dominates another
for all types of problem structure, pseudotree ordering results in much faster
DCOP solutions for problems with low constraint tightness.

5 Conclusion

We have presented a new algorithm for variable ordering, which allows to elim-
inate the need to process global information when solving a DCOP. It also in-

18

creases the solution search efficiency by exploiting the problem structure when
possible. This extends the class of problems for which employing ADOPT is
feasible and allows to apply it to completely decenralized problems. The algo-
rithm has provable theoretical guarantee on the resulting ordering depth and
polynomial time and space complexity.

6 Acknowledgements

This research was supported by AFOSR grant F49620-01-1-0542, AFRL/MNK
grant F08630-03-1-0005, and NSF award IIS-0205526.

19

References

[1] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT:
Asynchronous distributed constraint optimization with quality guarantees. Arti-
ficial Intelligence, 16(1–2):149–180, 2005.

[2] Eugene C. Freuder and Michael J. Quinn. Taking advantage of stable sets of
variables in constraint satisfaction problems. In Proceedings of International Joint
Conference on Artificial Intellgence, pages 1076–1078, 1985.

[3] Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint satis-
faction problem. In Principles and Practice of Constraint Programming, pages
222–236, 1997.

[4] Pragnesh Jay Modi, Syed Ali, Wei-Min Shen, and Milind Tambe. Distributed
constraint reasoning under unreliable communication. In Proceedings of Dis-
tributed Constraint Reasoning Workshop at International Joint Conference on
Autonomous Agents and Multiagent Systems, 2003.

[5] Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, and
Pradeep Varakantham. Taking DCOP to the real world: Efficient complete solu-
tions for distributed multi-event scheduling. In Proceedings of International Joint
Conference on Autonomous Agents and Multiagent Systems, 2004.

[6] Hyuckchul Jung, Milind Tambe, and Shriniwas Kulkarni. Argumentation as dis-
tributed constraint satisfaction: applications and results. In AGENTS ’01: Pro-
ceedings of the Fifth International Conference on Autonomous Agents, pages 324–
331, 2001.

[7] Katsutoshi Hirayama, Makoto Yokoo, and Katia Sycara. An easy-hard-easy cost
profile in distributed constraint satisfaction. Information Processing Society of
Japan Journal, 45(9):2217–2225, 2004.

[8] Makoto Yokoo. Distributed constraint satisfaction: foundations of cooperation in
multi-agent systems. Springer-Verlag, London, UK, 2001.

[9] Vipin Kumar. Algorithms for constraint-satisfaction problems: a survey. AI
Magazine, 13(1):32–44, 1992.

[10] Youssef Hamadi, Christian Bessière, and Jöel Quinqueton. Backtracking in dis-
tributed constraint networks. In Proceedings of European Conference on Artificial
Intelligence, pages 219–223, 1998.

[11] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[12] Roberto J. Bayardo Jr. and Daniel P. Miranker. On the space-time trade-off in
solving constraint satisfaction problems. In Proceedings of International Joint
Conference on Artificial Intellgence, pages 558–562, 1995.

[13] Katsutoshi Hirayama and Makoto Yokoo. An approach to over-constrained dis-
tributed constraint satisfaction problems: Distributed hierarchical constraint sat-
isfaction. In Proceedings of International Conference on MultiAgent Systems,
pages 135–142, 2000.

[14] Reinhard Diestel. Graph Theory. Springer, New York, NY, USA, 1997.

[15] Katia Sycara, Massimo Paolucci, Martin Van Velsen, and Joseph Giampapa. The
RETSINA MAS infrastructure. Autonomous Agents and Multi-Agent Systems,
7(1,2), 2003.

20

